Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Viruses ; 15(5)2023 05 07.
Article in English | MEDLINE | ID: covidwho-20242796

ABSTRACT

Avian coronaviruses (ACoV) have been shown to be highly prevalent in wild bird populations. More work on avian coronavirus detection and diversity estimation is needed for the breeding territories of migrating birds, where the high diversity and high prevalence of Orthomyxoviridae and Paramyxoviridae have already been shown in wild birds. In order to detect ACoV RNA, we conducted PCR diagnostics of cloacal swab samples from birds, which we monitored during avian influenza A virus surveillance activities. Samples from two distant Asian regions of Russia (Sakhalin region and Novosibirsk region) were tested. Amplified fragments of the RNA-dependent RNA-polymerase (RdRp) of positive samples were partially sequenced to determine the species of Coronaviridae represented. The study revealed a high presence of ACoV among wild birds in Russia. Moreover, there was a high presence of birds co-infected with avian coronavirus, avian influenza virus, and avian paramyxovirus. We found one case of triple co-infection in a Northern Pintail (Anas acuta). Phylogenetic analysis revealed the circulation of a Gammacoronavirus species. A Deltacoronavirus species was not detected, which supports the data regarding the low prevalence of deltacoronaviruses among surveyed bird species.


Subject(s)
Avulavirus , Gammacoronavirus , Influenza A virus , Influenza in Birds , Animals , Ducks , Gammacoronavirus/genetics , Influenza in Birds/epidemiology , Avulavirus/genetics , Siberia/epidemiology , Phylogeny , Birds , Animals, Wild , Influenza A virus/genetics , RNA
2.
Transbound Emerg Dis ; 2022 Sep 02.
Article in English | MEDLINE | ID: covidwho-2232808

ABSTRACT

Co-infection of SARS-CoV-2 and influenza viruses has been reported worldwide in humans. Wild birds are natural reservoir hosts for coronaviruses (CoVs) and avian influenza viruses (AIVs). It is unknown whether co-infection with these two types of viruses occurs in wild birds. In this study, the prevalence of co-infection with CoV and AIV in wild birds in Shanghai, China during 2020-2021 was investigated by detecting these viruses in cloacal, tracheal, and faecal samples. Results showed that the overall rate of samples positive for both CoV and AIV was 3.3% (82/2510; 95% confidence interval [CI]: 2.6%-4.0%), and that was mainly from Anseriformes. In CoV-positive samples, 38.9% (82/211; 95% CI: 32.5%-45.6%) of them had both CoVs and AIVs, whereas only 26.9% (82/305; 95% CI: 22.2%-32.1%) of AIV-positive samples had both CoVs and AIVs. These results suggest that CoV infection in wild birds renders them more susceptible to AIV infection. Phylogenetic analysis based on partial RNA-dependent RNA polymerase (RdRp) gene sequences of CoVs revealed that gamma-CoVs mainly cluster with duck CoVs and that delta-CoVs are more diversified and cluster with those of various wild birds. Continual surveillance is necessity to monitor the transmission and evolution of co-infection of these two types of viruses in their natural hosts.

3.
J Biosci Bioeng ; 134(5): 416-423, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2007813

ABSTRACT

5-Aminolevulinic acid (5-ALA), a vital precursor for the biosynthesis of tetrapyrrole compounds, has been widely applied in agriculture and medicine, while extremely potential for the treatment of cancers, corona virus disease 2019 (COVID-19) and metabolic diseases in recent years. With the development of metabolic engineering and synthetic biology, the biosynthesis of 5-ALA has attracted increasing attention. 5-Aminolevulinic acid synthase (ALAS), the key enzyme for 5-ALA synthesis in the C4 pathway, is subject to stringent feedback inhibition by heme. In this work, cysteine-targeted mutation of ALAS was proposed to overcome this drawback. ALAS from Rhodopseudomonas palustris (RP-ALAS) and Rhodobacter capsulatus (RC-ALAS) were selected for mutation and eight variants were generated. Variants RP-C132A and RC-C201A increased enzyme activities and released hemin inhibition, respectively, maintaining 82.5% and 81.9% residual activities in the presence of 15 µM hemin. Moreover, the two variants exhibited higher stability than that of their corresponding wild-type enzymes. Corynebacterium glutamicum overexpressing RP-C132A and RC-C201A produced 14.0% and 21.6% higher titers of 5-ALA than the control, respectively. These results strongly suggested that variants RP-C132A and RC-C201A obtained by utilizing cysteine-targeted mutation strategy released hemin inhibition, broadening their applications in 5-ALA biosynthesis.


Subject(s)
Aminolevulinic Acid , COVID-19 , Humans , Aminolevulinic Acid/metabolism , Heme , 5-Aminolevulinate Synthetase/genetics , 5-Aminolevulinate Synthetase/metabolism , Cysteine/genetics , Hemin , Mutation
SELECTION OF CITATIONS
SEARCH DETAIL